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ABSTRACT 

The paper represents a new aproach to the predictive model-reference control. The prediction of the process 
output signal is made on the basis of fuzzy process model. Using the fuzzy model of the process the forecast 
of the process output over a certain horizont in the future is cMculated and can be used as a predictor in 
the long-range predictive control strategy. The concept is implemented on real industrial scale temperature 
plant. 
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1.INTRODUCTION 

The predictive control has become a very important area of research in recent years. The principal is based 
on the forecast of the output signal y at each sampling instant. The forecast is made implicitly or explicitly 
according to the model of the process to be controlled. In the next step the control is selected which brings 
the predicted process output signal back to the reference signal in way to minimize the area between the 
reference and the output signal. The fundamental methods which are essentially based on the principal of 
predictive control are Richalet's method (Richalet et al., 1976, Model Algorithmic Control), Cutler's method 
(Dynamic Matrix Control), De Keyser's method (Extended Prediction Self-Adaptive Control) and Ydstie's 
method (Extended Horizon Adaptive Control). 

According to the process model two main approaches have been developed in the area of predictive control. 
The first one is based on parametric model of the controlled process. The parametric model could be 
described in form of transfer-function or in state-space domain. An important disadvantage of using the 
parametric model is that  it represents a linearized model of the process. The control of the strong nonlinear 
processes could be unsatisfactorilly. The second approach proposed in literature is based on nonparametric 
model. The advantage of this approach is that the model coefficient can be obtained directly from samples 
of the input and output responses without assuming the model structure. In our example a scheme of 
predictive control based on fuzzy relational matrix model is proposed, which represents a combination of 
nonparametric and parametric approach to the predictive control. 

Predictive control based on fuzzy relational matrix model is capable to control also very difficult processes, 
such as nonlinear processes, processes with long time delay and non-minimum phase. The controllers based 
on prediction strategy Mso exhibit remarkable robustness with respect to model mismatch and unmodeled 
dynamics. 

The first part  of the paper deals with the concept of fuzzy relational matrix modelling. In the second part 
the concept of fuzzy predictive control is given. Finally, the implementation of fuzzy predictive control on 
the real temperature plant is presented. 
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2.TEMPERATURE PLANT 

The heart of the temperature plant is a tubular heat exchanger, through which steam from an electrically 
heated steam generator continuously circulates in counter-current flow to water circuit. A schematic diagram 
is shown in Figure 1. Temperature of the steam is kept constant by a local presure control in the steam 
generator and the flow of the steam is controlled by position of the steam valve. After heating in the 
exchanger, the water passes through a pneumatic valve into the air cooler and then reenters the exchanger. 

Figure 1: Temperature plant 

The output of the whole process is the temperature of the water leaving the exchanger (T31). The output is 
controlled by the position of the steam valve ( G l l )  in the primary circuit which represents an input signal. 

Behaviour of the process strongly depends on operating conditions, which are defined by other signals applied 
to the process: temperature at the outlet of the air cooler (T41) and pneumatic valve position (G31). With 
approximatelly constant temperature T41, the setting of the pneumatic valve position results in significant 
changes of the process gain. 

3.FUZZY IDENTIFICATION 

Fuzzy logic appears to be a very promising approach in process automation, specially fuzzy modelling and 
fuzzy control. Fuzzy modelling or identification means to find a set of fuzzy if-then rules with well defined 
attributes, that can describe the given I /O behaviour of the process. In the recent years many different 
approaches for fuzzy identification have been proposed in the literature, by Tong [5], Pedrycz and Czogala 
[3], [4], Sugeno [1], [2]. 

The fuzzy identification algorithm used in this paper is based on fuzzy relational matrix model with crisp 
output variable. 

3.1.THE IDENTIFICATION ALGORITHM 

Suppose the rule base of a fuzzy system is as follows: 

Ri : I F  xl is Ai and x2 is Bi  T H E N  y = ri 

i = 1 , . . . i  (1) 

where xl and x2 are input variables of the process, y is an output variable, Ai, Bi are fuzzy sets characterized 
by their membership functions and ri are the crisp values. Such a very simplified fuzzy model can be regarded 
as a collection of several linear models applied locally in the fuzzy regions, defined by the rule premises. The 
idea behind this kind of modeling is close to well-known concept of gain scedulling. 

Rule-premises are formulated as fuzzy AND relations on the cartesian product set X = Xt × X2, and several 
rules are connected by logical OR. Fuzzification of a crisp value Xl produces a column vector 

~,(~1) = [~A~ (xl), ~A~ (x l ) , . . .  ~ (xl)JT (2) 
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and similarly for a crisp value x2. The degrees of fulfillment of all possible AND combinations of rule premises 
are calculated and written into matrix S. If the algebraic product is used as AND operator, this matrix can 
be directly obtained by multiplication: 

s = , 1  ® , ~  = , 1 - , ~ .  (a) 

A crisp output value y is computed by simplified algorithm for singletons as a weighted mean value (Center 
of Singeltons): 

rn 
E,L1 E~:I ~,J~,~ (4) 

Y = E,~=l E j ~ l  s,~ 

The dimension of matrix S ( m  × n ) ,  which actually represents the structure of the model, depends on the 
dimensions of input fuzzy sets tLl(m x 1) and tu2(u x 1). The fuzzy relational matrix R consists of elements 
r i j .  

In order to apply a standard least-squares method to estimate the parameters r i j ,  the vectors s and r are 
formed from $ and R, respectively: 

8 ~ (811 8 1 2 . . . 8 1 n . . . 8 r n  1 8 m 2 . . . S r n n )  T 

-~- ( r l l  r 12 . . .~ ' 1  . . . .  / 'ml F r o 2 . . . r r n n )  T (5) 

Using these vectors, equation 4 is rewritten as: 

S T • r 

Y -- 8 T .  I (6) 

where I defines the vector of ones of the same dimension (n • m × 1) as s and r. The elements r i j  are 
estimated on the basis of the observations which are obtained in equidistant time intervals by measuring the 
process input and output. A system of linear equations is constructed from upper equations for the time 
intervals t = t l , t  = t : ,  . . . , t  = tN: 

The system is of the form: 

s T (tl)  
8 ~ (t~) 

8T ( t~)  

s T (tl) Zy (tl) 
s ~ (t~) z y  (~ )  

s r  (tN) zy (~N)  

(7) 

~ . r  = a (8) 

with a known nonsquare matrix • and a known vector ~2. The solution of this overdetermined system is 
obtained by taking the pseudo-inverse as an optimal solution of vector r in a least squares sense: 

= ( ~ T ~ ) - I ~ T a  (9) 

where ~ stands for fuzzified data matrix with dimension N x (n • m) and ~ has dimension N × 1. 

In the case of more than two input variables (MISO multi-input-single-output fuzzy system), matrices S and 
R are no longer matrices, but both become a tensor, defined in the total product space of the inputs. 

3.2.FUZZY MODELING OF THE TEMPERATURE PROCESS 

Similarly to static feedforward neural network, fuzzy models actually represent a static mapping between 
model input fuzzy sets and output fuzzy sets, so dynamic systems are then modelled as a nonlinear static 
mapping between the fuzzy sets defined in the space of lagged model inputs and outputs. Note that in the 
same way the system dynamics are captured in other kinds of models like linear regression models or neural 
networks. 

For the temperature process a MISO fuzzy model was identified. The model rule base approximates a first- 
order nonlinear regression model where the new temperature T31 is a function of the current temperature 
T31, the steam valve position G l l ,  the current temperature T41 and the current position of the pneumatic 
valve G31: 

y(k + 1) = f (y (k) ,  ul (k), u2(k), ~3(k), u4(k)) (10) 
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In each fuzzy input space we chose only three equally spaced triangulary shaped fuzzy sets. In generaly, the 
estimation of the membership functions (shape, number, position,) and determination of the rules can be 
solved with several methods (genetic algorithms, neural network, clustering,..). 

The fuzzy model of the process is given by four-dimensional hyperspace structure R. 

4.FUZZY PREDICTIVE MODEL-BASED CONTROL 

In this section the basics of predictive control based on convolution theorem is introduced. The convolution 
model is described using the following equation 

oo 

y(k) = E g i A u k _ i  + n(k) (11) 
i = 1  

where y(k) represents the output signal, &u(k) is input signal and gi are coeficients of process step response 
and n(k) describes the unmodeled dynamics. 

Control signal in the case of model-reference predictive control is obtained optimizing the criterion function 
according to the variable Au(k + j) 

N2 N~ - 1 

J-= E ( y ( k + j ) - y , n ( k + j ) ) 2 + ) ~  E (Au(k+J))2 (12) 
j=N1 j = 0  

where Au(k + j) = 0 for j > Nu is assumed. The variable ym(k + j) represents j steps ahead prediction of 
reference signal , ~)(k + j) describes the prediction of output signal obtained using the process model and 
Au(k +j)  stands for prediction of control signal. The values N1 and N2 are minimal and maximal prediction 
horizon and Nu denotes prediction horizon of control signal. The parameter A represents the weight of the 
control signal. 

The output signal prediction can be divided on free respons of the process yp(k + j) and forced response 
y,,(k + j) as follows 

~l(k + j) = yp(k + j) + y,,(k + j) + n(k) (13) 

Free response of the process denotes the behaviour where Au(k +j )  = 0 for j = 1, . . . ,  Nu is assumed. Forced 
response describes the behaviour in the case of input signal Au(k + j) for j > 0. 

The output signal prediction is according to the superposition described in the following form 

~?(k + j ) =  }-~g~zXu(k + j - i) + g~Au(k+j-i)+n(k) 
i = 1  i=.j+l 

o r  

(14) 

J 
#(k + j) = y(k) + ~ g, au(k + j - ~) + ~ g,,~u(k + j - i) - ~ g ,~ (k  - i) (15) 

/ = 1  i = j + l  i = l  

Previous equation can be described also in the compact form 

~(k + j) = GjAu(k + j) + pj (16) 

where Gj = [glg2...gj] denotes the vector of step response coefficients, pj represents the free response of 
the system given by equation 

pj = y(k) + ~ giAu(k + j - i) - ~-~ giAu(k - i) (17) 
i = j + l  oo i~-i  

a = y(k) + ~ (a+, - e , l ~ . ( k -  i) (18) 
i = 1  

In the case of asimptoticaly stable processes the upper equation can be given in the following form 

N2 

p~ = y(k) + ~ (a+, - g , )~u(k-  i) 
i----1 

(19) 
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where the maximum prediction horizon N2 is chosen to fulfill the equation 

g j + ~  - g~ --- 0 ,  ( 2 0 )  

for i > N2 and j -- N1 . . . .  Nu. 

The equation 12 can be in the compact matrix form described as follows 

g = (Yp - Y m ) ( Y p  - Ym)  T + A A u A u T  (21) 

where yp -- [~)(k-t-Yl), . . . , ~ t ( k - t - N u ) ]  T denotes the vector of output signal prediction, Ym = [ym(k + 

N1), . . . ,y,~(k + N2)] T is vector of reference signal prediction between minimal and maximal prediction 
horizon. Vector Au  = [Au(k) . . .Au(k  -F N~, - 1)] T represents the sequence of control signal. 

The prediction of the output signal in the compact matrix form is the following 

yp = G A u  + p (22) 

where 

and p = [PN, . . .PN:] .  

G =  

gN1 0 0 " "  

gNl+l gN1 0 • • • 

gN2 gN~- i  " " " g N 2 - N , + I  

(2~) 

Considering the previous equations the criterion function can be described 

J = ( G A u  + p - y m ) ( G A u  q- p - y m )  T -t- A A u A u  T (24) 

The optimal solution of criterion function is obtained in the following form 

A u  = ( G T G  ÷ A I ) - l G T ( y m  - p )  (25) 

The solution is given in vector form and provides the calculation of input signal for Nu values in advance 
where only the first value is applied to the process. In the next sampling period the solution is computed 
again and another set of Nu values of the control is obtained according to a receding horizon strategy. 

4.1.FUZZY CONTROL USING DYNAMIC MATRIX 

The main idea of fuzzy predictive control using dynamic matrix is to combine the advantages of fuzzy 
modeling and predictive control. The idea is based on on-line computing of dynamic matrix G. The 
described method offers some advantages in the case of nonlinear processes where the dynamic depends on 
operating point and can be presented as G ( u ,  y). Dynamic matrix is calculated on the basis of fuzzy process 
model r whenever the operating point of the system is changed. The vector Gj is calculated recursively 
using equation 

~T(g j_ l ,  u(~)  + u,~ep) • r (26) 

for j =--- 1,-- .N2 where ustep represents the step input signal to the process. The value of go is equal y(k ) .  
Dynamic matrix of the system is calculated when the reference signal ym(k)  is changed or the difference 
between process output and model reference becomes significant. 

5.REAL TIME EXPERIMENT 

Although the process is very complex, it could be presented as a model with dynamics, approximately 
described with first order with small time delay, with significantly time varying parameters and nonlinear 
according to the operating point. The results in the case of fuzzy predictive control for temperature plant 
are shown in Fig.2, where the output y( t ) ,  the reference model output ym( t )  and control signal u(t) are 
presented for two different operating conditions determinated by the position of the pneumatic valve G31 
(0% and 12.5% opened). 
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Figure 2: The process output and the reference-model signal in the case of fuzzy predictive control 

6.CONCLUSION 

In the paper the fuzzy predictive control algorithm is presented. Regarding to the real-time experiments on 
the temperature plant which exhibits a nonlinear character it can be seen that the new algorithm gives a 
good performance. The main advantage in comparison with other conventional techniques is use of fuzzy 
model which enables implementation of nonlinear processes. 
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